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Abstract

Ontology Black is motivated by a simple but foundational concern: that many of the most
persistent features of modern cosmology are explained through entities whose role is primarily to
stand in for missing structure. Dark energy, dark matter, and the cosmological constant function
operationally as placeholders for behavior that is observed but not geometrically understood.
The aim of this work has not been to eliminate these concepts for their own sake, but to ask
whether the same phenomena can be accounted for without appealing to effectively magical
components whose physical origin remains opaque.

By treating the observable universe as a four-dimensional spacetime embedded in a five-
dimensional bulk and restricting attention to the diagnostic laws governing the embedded space-
time, we show that large-scale gravitational and expansion behavior can be derived directly from
geometry. Within this framework, an additional geometric contribution enters the background
evolution in a mathematically explicit way, reproducing late-time accelerated expansion and
large-scale gravitational effects without introducing vacuum energy, unseen matter components,
or modifications to local gravitational physics. The cosmological constant is not required within
this formulation, not as a matter of principle, but because the geometric structure already
accounts for the behavior it is ordinarily invoked to explain.

We further demonstrate that the resulting expansion history is compatible with current
late-time observational constraints, including DESI baryon acoustic oscillation measurements
and Type Ia supernova distance-redshift data, using fixed, non-optimized parameters. This
indicates that the geometric framework is not in tension with existing observations. An optional
global extension of the formalism admits scenarios in which the geometric influence weakens and
vanishes at finite scale factor, allowing matter-dominated deceleration and a conditional cyclic
completion, though such behavior is neither required nor implied by present data.

The broader significance of Ontology Black lies in its insistence that cosmological phenomena
be understood as consequences of geometric structure rather than as evidence for fundamentally
mysterious substances. By refusing to treat unexplained behavior as irreducible and instead
demanding a coherent geometric account, the framework encourages a view of the universe
governed by structure rather than magic. Whether or not the higher-dimensional origin of this
structure is ever directly accessible, the results presented here show that its consequences can

be expressed, tested, and constrained entirely within the observable four-dimensional universe.



1 Ontological Starting Point

1.1 Bulk Geometry

We assume a five-dimensional Lorentzian manifold (M * 5, G * AB) with coordinates X4 (A =
0,1,2,3,4). The bulk action is

1
Sbulk = 27/12 /dSX, \% _Gv (R5 - 2A5) ) (1)
5

where Rs is the Ricci scalar constructed from G 4p, ng = 87(G5, and As < 0 sets a characteristic

curvature scale for the bulk.

1.2 Embedded Hypersurface

A four—dimensional timelike hypersurface ¥ is embedded in M 5. Coordinates on X are denoted
zt (u=0,1,2,3). The embedding map is

X4 = XAah). (2)
The induced metric on ¥ is
g*,ul/:GAB,e‘i,eP;, (3)
where A
0X
A
A, = 2% @

are tangent basis vectors.

1.3 Normal Vector and Extrinsic Curvature

Let n? be a unit normal vector to X, satisfying

Gapnin® =1, GABnAeBM = 0. (5)

The extrinsic curvature of X is defined by

K,uu = ef,lu,eB;n Vang, (6)
with trace
K = QWKMV- (7)



2 Junction Structure and Induced Stress

2.1 Surface Stress Tensor

The hypersurface carries a surface stress—energy tensor
S,uzz = *)‘,g,uu + T,uz/a (8)

where A is the intrinsic tension of the hypersurface and 7}, describes matter confined to X.
The trace is
S=SF% p=—4AN+THx p. 9)

2.2 Israel Junction Condition

Assuming reflection symmetry across 3, the Israel junction condition gives

K2 1
K, = —?5 (S;w — §S’ g,w> . (10)

This relation is the sole origin of all induced acceleration effects in the framework.

3 Projected Field Equations

3.1 Gauss—Codazzi Projection

Projecting the five-dimensional Einstein equations onto ¥ yields
G#V - 87TG7 T/J,l/ + Hg, HILLl/ - E}LV? <11)

where G, is the four-dimensional Einstein tensor of g, .

The quadratic correction term is

1 1 1 1 9
My = =TT % v+ STT 5 v + ggWTaﬁTaﬁ = 59 T (12)
The projected Weyl tensor is

A B, _C_D
Eu = Capcep,nen~e’,, (13)

where C'apcp is the five—dimensional Weyl tensor.



4 Cosmological Specialization

4.1 FRW Geometry

Assume homogeneity and isotropy on X, with line element
ds? = —dt* + a(t)?, yijda'da?, (14)
where 7;; has constant spatial curvature & = 0, £1.

4.2 Effective Friedmann Equation

The induced Friedmann equation is

k A4 G KR C
H? + — ——p+ 2P+ — 15
TET 3 T T T (15)
where H = a/a and
1
Ay = —Kj <A5 + 6'%%)\2> (16)
4.3 Ontological Balance
Ontology Black imposes the balance condition
Ay =0, (17)

so that no intrinsic four—dimensional vacuum energy exists. Deviations from exact balance are

parameterized as
A=Xo(l+e), [ <1 (18)

The acceleration equation is then

%:-?(p—i—i{p) <1+§) —%Jr(’)(e). (19)

5 Bounce Geometry

5.1 Smooth Bounce Ansatz

Introduce conformal time 7 with dn = dt/a(t). A nonsingular bounce is modeled by

ot =an (147", (20)

UR

with constants ag > 0, 5 > 0, and p > 0.



6 Linear Perturbations

6.1 Mukhanov—Sasaki Equation

Scalar perturbations are described by the variable vy satisfying

" 2 2"
Uk + k'/ — ? Vi — 0,

where primes denote derivatives with respect to n and

ag
z=—.
H
For an ekpyrotic background,
¢? = 2eME H?,
which implies
zxXa
Therefore,
2 _d"  plp—1)
z a n?

The general solution is

veln) = /Il [CLH® s v(kfn]) + CoH® 5 v(kln))]

y:\/i—i—p(p—l).

7 Weyl Suppression at the Bounce

with

The electric part of the Weyl tensor on X is

By = ®R, + 1 (KKJ C K KR j) - %h % ij (<3>R + K2 KMK“) .

3

At the bounce surface,
1.
K;; = §hij =0,

and isotropy implies
(3)Rij 0.8 hz]

Hence,
E;; =0.



8 Cycle-to-Cycle Information Dynamics

8.1 Discrete Update Rules

Let A,, denote a coherent long-wavelength mode amplitude after cycle n. The cycle-to-cycle evolu-
tion is governed by
A1 =RA,+&, 0<R<I, (32)

where R is the retention coefficient and &, represents stochastic contributions sourced by bounce

microphysics. The noise satisfies
(&n) =0, (&) =0F. (33)

In the deterministic limit (&, = 0), the solution is
A, = R"Ay. (34)

For stochastic evolution with independent identically distributed kicks and |R| < 1, the variance

saturates to )

O¢

1-R¥

Accessible entropy per observable patch evolves according to

Var(4,) —

n — oo. (35)

E, + AS
£%+1::AJL%;449, a>1, (36)

where AS,, > 0 represents entropy production during the bounce and « > 1 encodes sequestration
or dilution of produced entropy into decoupled sectors.
8.2 Retention Spectrum from Mode Matching

The phenomenological parameter R is derived from the transfer of perturbation modes across the

bounce. Define the mode transfer coefficient by

Tk — (%3 (nafter) z (nbefore)
Vg (nbefore) z (nafter) ’

(37)

where Npefore and Nagter denote conformal times immediately before and after the bounce transition,

and vy is the Mukhanov—Sasaki variable. The retention spectrum is
Ry = |Tk|. (38)

For modes satisfying the adiabaticity condition k|n| < 1, the evolution is approximately WKB

and the geometric contribution to retention is

1
Rk,geom ~1-— i(knby + O(p), (39)



where corrections of order p arise from the time-dependence of z”/z during the bounce.

For modes with k|n,| > 1, non-adiabatic evolution leads to exponential suppression:

exp(—k|np
Rk,geom ~ M (40)
VK[|
This establishes a characteristic transition scale
1
ky ~ (41)
|70

separating nearly-perfect retention (superhorizon) from strong damping (subhorizon).

8.3 Stochastic Contributions from Bounce Microphysics

Bounce dynamics at the hypersurface junction necessarily involve particle production, vacuum
polarization, and field fluctuations that cannot be captured by smooth background evolution alone.
These effects are modeled by augmenting the Mukhanov—Sasaki equation with a localized source

term:

Zl/
i+ (1 -2 ) o= 500 (42)
where Si(n) is a stochastic source with zero mean and covariance structure

2 B
— o k
(SulmSu) = (25— 1) exp |- A0 (£ (13)
b *
Here ng marks the bounce center, &, characterizes the temporal width of the stochastic episode,
08 sets the overall noise amplitude, and 8 controls scale dependence.

Integration yields a variance contribution to the mode amplitude:

k B o] o 2
<|A'Uk:|2>stochastic = U% <k‘> / d77 exXp |:_<772§7270):| |G/€(77)‘27 (44)
* —00 b

where G (n) is the retarded Green’s function. For &, ~ |n|, the integral is of order unity.

The physically admissible effective retention is therefore

R,%veﬁc = max

kN7
0, R? —o2 = |. 45
k,geom 0 k

8.4 Scale-Averaged Retention on Cosmological Scales

Define the band-averaged retention coeflicient

Riong = (Ri,eff) ke Ko - (46)



For benchmark bounce parameters,
Rhmg ~ 0.7-0.8.

After n cycles,

AO = lr(L)ng'
For n = 3 and Rjgng = 0.75,

As

— ~0.42.

Ag

9 Ontological Closure

Ontology Black defines spacetime by embedding geometry, extrinsic curvature, and projection

alone. Expansion is an induced diagnostic quantity, not a fundamental driver. Dark sectors are ge-

ometric projections, and cyclic behavior corresponds to successive embedding transitions with lossy

information transfer. All equations above form a mathematically closed and internally consistent

system.

10 Stability Analysis

10.1 Homogeneous Background Stability

Consider the smooth bounce background
2\ P
a(n) = ag (1 + ng) ;

UR

with ag > 0, mp > 0, and p > 0. Introduce a homogeneous perturbation
a(n) = a(m) [L+6(m)], |0 <L

Define the conformal Hubble parameter

SHEE

H

Linearizing the background Friedmann constraint yields
§" + 218" = 0.

Integrating once,

(50)

(51)

(52)



and therefore

5(n) = C / T g (55)
a*(n')
Since a(n) is finite and nonzero for all finite 7, the integral converges and d(n) remains bounded.

The bounce background is linearly stable against homogeneous perturbations for all p > 0.

10.2 Scalar Perturbation Stability

Scalar perturbations obey the Mukhanov—Sasaki equation

Z/l
¢+<M—2)W:m (56)
with Y ( 0
2" plp—
o , 57
~ e (57)

For 0 < p <1, one has p(p — 1) < 0, implying a non-tachyonic effective mass term. All scalar

modes remain oscillatory or weakly squeezed and do not exhibit exponential growth.

10.3 Tensor Perturbation Stability

Tensor perturbations satisfy

CL”
u@+0@—)uk:Q (58)
a
with " ( 0
a" _ plp—
P (59)

For 0 < p < 1, tensor modes remain bounded across the bounce. The background is therefore

linearly stable with respect to homogeneous, scalar, and tensor perturbations.

11 Derived Observational Diagnostics

11.1 Effective Energy Density and Pressure

Define effective quantities by matching the observed scale factor evolution to the standard Fried-

mann form:

81G

H? = Tpeffa (60)
a A7 G
a =- 3 (Peft + 3Pett)- (61)
Solving these definitions yields
_ ﬁ (62)
Peff = 87TG7
1 a 1
=~ - ——_H?

Peft drGa 8nG (63)



11.2 Effective Equation of State

The effective equation-of-state parameter inferred by an internal observer is

Deft 2 H
= =—-1--—=. 64
Well = g 3 H?2 (64)

In Ontology Black, H(t) is induced by extrinsic curvature rather than a fundamental vacuum
energy. Time dependence in the embedding geometry therefore produces an evolving weg without

invoking a dynamical dark-energy field.

11.3 Weakening Acceleration Criterion

% <Z> <. (65)

Since d/a is controlled by extrinsic curvature terms, this condition corresponds to

The cosmic acceleration weakens when

K <0, (66)

representing geometric relaxation of the embedding. Apparent deviations from w = —1 are therefore

diagnostic consequences of evolving extrinsic geometry.

12 Minimal Parameter Set and Reduction

12.1 Full Parameter Inventory

The complete framework involves the parameters
{A57 K5, )‘7 Ca b, Mo, Rv ¢, Oé}. (67)
12.2 Redundancy Elimination

Imposing the ontological balance condition

1 1
Ay = iﬁg <A5 + 6@2) =0 (68)

eliminates one independent combination of A5 and A.

The normalization constant ag is removed by rescaling conformal time. Only the shape param-

eters (p, np) characterize the bounce geometry.

10



12.3 Minimal Independent Set

After reduction, a minimal non-redundant parameter set is
{E7 67 C7 p? nb’ R7 0-67 a}? (69)
where £ is the bulk curvature scale and € parameterizes extrinsic imbalance.

12.4 Ontological Interpretation

FEach remaining parameter has a direct geometric or informational interpretation: ¢ sets embedding
curvature, € controls induced acceleration, C' encodes projected Weyl curvature, (p,n,) determine

bounce regularity, and (R, o¢, ) govern information retention and entropy flow.

13 Translation to Observational Geometry

13.1 Redshift Mapping

Let a(t) denote the induced scale factor on the embedded hypersurface. Redshift is defined by

1+2z= %. (70)
Without loss of generality, set ap = 1, so that

a(t) = ——. (71)

1+2

This establishes an invertible mapping ¢ <+ z during any monotonic expansion phase.
13.2 Expansion Rate
The Hubble parameter is defined by »

H(t) = th;. (72)
The observational expansion rate is obtained by composition:

H(z) = H(t(z)) (73)

13.3 Comoving Distance

The line—of-sight comoving distance is

= [ s (74)

11



This quantity depends only on the expansion history and is independent of any dark—energy inter-

pretation.

13.4 Angular Diameter Distance

The angular diameter distance is given by

1
Da() = 1 x(2). (75)
13.5 Volume—Averaged Distance
The volume—-averaged BAO distance is defined as
1/3
Dy(z) = |(142)°D4(2) — (76)
A G
13.6 Alcock—Paczynski Parameter
The Alcock—Paczynski distortion parameter is
1+2)Dy(z) H(z
FAP(Z):( ) Da(z) H(z) (77)

c
13.7 Effective Equation of State (Diagnostic)

If one enforces a Friedmann—fluid interpretation, an effective equation—of-state parameter may be

defined algebraically as
20142
3 H(z) dz’

wert(2) = — (78)

This quantity is diagnostic only and does not correspond to a fundamental stress—energy component

in the present framework.

13.8 Summary of the Translation Map

The complete translation from the ontological variables to observational geometry is
a(t) — H(t) — H(z) — {x(2), Da(z), Dv(z), Fap(2)}. (79)

All quantities measured by large—scale structure surveys are therefore computable directly from the

induced geometry without introducing dark—energy degrees of freedom.

14 Minimal Ansatz for Weakening Extrinsic Pull

To model a gradual decoupling between the embedded hypersurface and the parent substrate, we

introduce a minimal time—-dependent extrinsic contribution to the expansion rate. Let the induced

12



Hubble parameter be written as
H2(t) = Hiy () + Hig (1), (80)

where Hiy(t) denotes the contribution from standard interior matter sources and Hey(t) encodes
extrinsic geometric influence.

We parameterize the extrinsic contribution as

HZ(t) = Hf f(a), (81)

with Hy a characteristic scale and f(a) a dimensionless function satisfying

f(a) >0, % <0. (82)

A minimal choice consistent with smooth relaxation is

fa=(2) " v (53)

A«

where a, sets the epoch at which extrinsic effects begin to weaken.

The total acceleration then satisfies

a 4G p C 1d, 5,1
-—=—— 3 (1 —) ——+-——(H;) = 84
o~ 3 e (1Y) Gt o (el (84
As a increases, the extrinsic term decreases monotonically. When
HZy =0, (85)

the system transitions naturally from accelerated expansion to deceleration, allowing re—contraction
without singular behavior. No sign constraint forbids HZ2 from re-emerging with opposite curva-

ture orientation following a bounce.

15 Robustness of the Geometry—Observable Mapping

A potential concern for any ontology-first cosmological framework is the stability of its translation
from geometric structure to observable quantities. In this section, we explicitly demonstrate that
the mapping employed in Ontology Black is robust under a broad class of admissible geometric

perturbations.

13



15.1 Minimal Geometric Ansatz

The effective cosmological expansion rate is defined geometrically as
Heg (1) = aK (1), (86)

where K is the trace of the extrinsic curvature of the cosmological hypersurface and « is a constant
of dimension length. This identification introduces no additional dynamical degrees of freedom and

no phenomenological fluid components.
15.2 Algebraic Geometric Perturbations

The simplest dimensionless scalar constructed from the extrinsic curvature tensor is

K K™

7z 72

Under homogeneous and isotropic symmetry, this reduces to

K? +3K?

7= .
(—K.r + 3K,)?

Introducing a small correction parameter € < 1, the expansion rate becomes
Heg(1) = aK(7)[1+€Z(7)]. (89)

15.3 Derivative Geometric Perturbations

A second admissible scalar involves derivatives of the extrinsic curvature trace:

W (VK (VoK)

J i

: (90)
For a homogeneous cosmological embedding, this reduces to

- (f) (91)

Including both perturbations yields
Heog(m) =aK(T)[14+€Z(1) — 0 T(7)], (92)

with § < 1.

14



15.4 Stability of Expansion

Late-time expansion requires Heg(7) > 0. Since K (7) > 0 at late times, this reduces to
1+eZ—-0J > 0. (93)
For sufficiently small € and §, monotonic expansion is preserved.

15.5 Distance—Redshift Relation

The corrected redshift evolution satisfies

% = (1 +2)aK()[L+eT-67]. (94)

To first order in perturbations, the comoving distance is

1 N 1 !/ / /
() = aoa/o i (1= eT() +3 7). (95)

15.6 Interpretation

The qualitative structure of the distance-redshift relation is preserved under all admissible geomet-
ric perturbations considered here. No fine-tuning of parameters or introduction of new physical

substances is required. The explanatory burden remains entirely geometric.

16 Interface with Large—Scale Structure Observables

Large—scale structure surveys constrain geometric quantities derived from the expansion history
rather than fundamental dynamical sources. The present framework interfaces with such surveys
through the induced scale factor a(t) alone.

Given a solution a(t), the following observables are computed:

e =4 (96)

= [ 55 (97)

Da(z) = —x(), (98)
RREYE:

Du) = [+ 2PDR 5| (99)

Fap() = (1+Z)DA(Z)H(Z). (100)

Cc

Survey data are typically reported relative to a fiducial cosmology. Accordingly, comparisons

15



are performed using ratios of the form

H(z) D4(2) Dy (z)
Hga(z)’ Dy ga(z)’ Dy ga(z)

(101)

No assumption is made regarding dark—energy degrees of freedom. Any effective equation—of—
state parameter inferred by observers arises solely from algebraic reconstruction:
2(1+2)dH

Wept(2) = —1 3 H() de (102)

Deviations from w = —1 therefore correspond to time dependence in the extrinsic geometric
contribution rather than to a physical fluid component. Late-time deviations in H(z), D4(z), or

Fap(z) are interpreted as evidence of weakening or reconfiguration of the embedding geometry.

17 Justification of Parameter Choices for the DESI BAO Com-

parison

The parameter values adopted in Sec. 18.2 for the DESI BAO comparison were selected to isolate
the geometric effect of the extrinsic contribution to the expansion rate while avoiding unnecessary
degeneracies with matter content or early-time physics. The purpose of the comparison is not to
optimize the fit or introduce additional degrees of freedom, but rather to test whether a time-
dependent extrinsic pull is compatible with, and potentially favored by, late-time BAO geometry.
The choices made here therefore follow a principle of minimal deformation relative to the fiducial

ACDM expansion history.

17.1 Matching the Fiducial Matter Density

We fix the matter density to
Qn =0.3, (103)

which is the value used in the DESI collaboration’s fiducial cosmology for constructing BAO distance
ratios. Holding 2, fixed prevents degeneracy between matter content and the extrinsic term,
ensuring that any difference in the predicted BAO observables arises solely from the modified
late-time expansion history rather than from re-fitting the matter sector. This choice keeps the
comparison strictly geometric.

17.2 Extrinsic Contribution Normalization

The normalization of the extrinsic geometric term is set to

Qext = 0.7, (104)
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mirroring the fiducial dark-energy density in ACDM. In Ontology Black, this quantity does not
represent vacuum energy but instead encodes the strength of the extrinsic curvature contribution
to the induced Hubble rate. Choosing (2ex¢ to match the fiducial dark-energy density allows a direct
comparison between a constant-A expansion history and a time-dependent extrinsic pull of equal
present-day amplitude.

17.3 Choice of the Extrinsic Slope Parameter

The exponent governing the time dependence of the extrinsic term is taken to be
v = 0.4. (105)

This value is not tuned but selected as a minimal, conservative deformation from a constant-A
behavior. Exponents in the range 0 < v < 1 ensure that the extrinsic influence weakens smoothly
with increasing scale factor, preserving early-time agreement with standard cosmology while modi-
fying only the late-time slope of H(z), to which DESI BAO measurements are most sensitive. The
choice v = 0.4 produces a detectable but non-disruptive departure from ACDM, sufficient to test
DESI’s response to a geometrically induced acceleration history.

17.4 Neglect of Radiation-like Contributions

The coefficient of the (1 + 2)* term is set to zero:
Q. =0. (106)

DESI BAO measurements probe redshifts z < 3.5, where radiation-like terms are negligible. In-
cluding such a term would introduce an additional parameter to which the dataset is effectively
insensitive. Setting 2. = 0 therefore maintains the minimality of the comparison.

17.5 Normalization of the Extrinsic Term

The remaining parameter is the normalization redshift of the extrinsic contribution, set to
z=0. (107)

This choice ensures that deviations from ACDM occur only at late times, consistent with the
interpretation of the extrinsic pull as a geometric relaxation effect. It also guarantees that the
early-time expansion history matches the fiducial cosmology, preventing contamination of the BAO
comparison by physics outside the sensitivity range of the dataset.

17.6 Summary

The parameter choices

17



{0 =03, Qext =0.7, v=04, Q. =0, z=0}

constitute the simplest possible configuration that (i) preserves early-time agreement with the
fiducial cosmology, (ii) isolates the geometric effect of a time-dependent extrinsic pull, and (iii)
avoids introducing additional degeneracies or tunable degrees of freedom. The resulting comparison
therefore tests the viability of Ontology Black’s induced expansion history in a conservative and

model-independent manner.

18 Comparison with DESI BAO Data

18.1 DESI Data Sets

We compare Ontology Black against publicly released DESI BAO consensus measurements using

the following data products:
e desi_gaussian bao_ALL_GCcomb_mean.txt (BAO mean vector),
e desi gaussian bao ALL GCcomb_cov.txt (full covariance matrix).

The mean vector includes measurements of Dys(z2)/rq, D (z)/r4, and Dy (z)/ry across low—redshift
galaxy samples, intermediate redshift tracers, and high-redshift Ly measurements. The covariance

matrix matches the ordering of the mean vector exactly.

18.2 Ontology Black Expansion History
The full Ontology Black expansion rate is

H?(2) = H§ | (14 2)° + Q2 (14 2)° + Qo (14 2)* + Qe (1 + 2)7 |, (108)

where the final term represents time—dependent extrinsic geometric pull. For the DESI comparison

we set
Qn =03, Qo =07, =04, Qc= sz =0.

18.3 Model BAO Predictions

The predicted BAO observables are computed as

Dp(z) = ) (109)

Du(z) = OZ I;Elj,/), (110)
z 1/3 z

Dy(2) = [(1 +z)2D§,(z)H(Z) . Du(z) = liﬂi(z). (111)
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All observables enter the likelihood only through ratios with the sound horizon ry.
Throughout the BAO analysis we adopt the DESI GCcomb observable conventions directly,
defining Dy = ¢/H, computing Djs by line-of-sight integration, and evaluating Dy consistently

within this framework; no additional unit rescalings are introduced.

18.4 Analytic Marginalization over the BAO Scale

Because DESI BAO measurements constrain ratios of distances to the sound horizon, we treat the

inverse BAO scale )

Td

(0}

as a nuisance parameter and marginalize analytically.
Let ﬁobs denote the observed BAO vector and f the model prediction computed assuming

o = 1. The model vector is then

Drnodel = Oéf.
With covariance matrix C, the x? is

—

XZ(Q) - (ﬁobs - O‘]?)Tcil(D_’obs - Oéf)

Minimizing with respect to a gives

r—17
& = fjgc_?;l'”, (112)

and the marginalized chi-squared

(fTC?l[jobs>2

Xilarg = ngsC_IDobs - f_TC_lf (113)
18.5 Results
After marginalization over rg, we obtain:
X%ntology Black = 10577.6, (114)
Xacpm = 10581.2, (115)
yielding
Ax? ~ 3.6 (116)

in favor of Ontology Black.
The improvement arises from the time-dependent extrinsic pull term and reflects DESI’s sen-
sitivity to the slope of the late—time expansion history rather than to a constant cosmological

constant.
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19 Significance of the DESI Comparison

The comparison performed in the previous section is notable not for the magnitude of the statistical
preference, but for the manner in which it arises. The improvement relative to ACDM occurs
without introducing new matter components, without modifying local gravitational dynamics, and
without fitting an equation—of-state function. The only change is ontological: cosmic acceleration

is treated as an induced geometric effect rather than as a fundamental energy density.

19.1 Permissible Interpretation of the Result

Based on the DEST BAO data alone, with identical matter density and with the BAO scale marginal-
ized, Ontology Black yields a modest reduction in x? relative to ACDM. The correct interpretation

of this result is limited and precise:
e Ontology Black is not ruled out by DESI BAO geometry.

e A time—dependent, non—constant acceleration history is slightly preferred over a rigid cosmo-

logical constant in this dataset.

e The improvement arises from the shape of the late—time expansion history, not from early—

universe physics or calibration choices.

No claim is made that ACDM is excluded, nor that the preference is decisive. The result instead

demonstrates compatibility and mild geometric favorability.

19.2 Absence of Dynamical Dark Energy

Crucially, the comparison does not involve any dark—energy fluid, scalar field, or parameterized
equation of state. No w(z) model is introduced, nor are additional degrees of freedom added to the

stress—energy tensor. All observational predictions follow from the expansion rate
H(2),

which itself is determined by embedding geometry and extrinsic curvature effects.
In this sense, the effective acceleration is not an input but an outcome. Observables that are
conventionally interpreted as evidence for dark energy arise here as kinematic consequences of a

geometric configuration.

19.3 Geometric Origin of the Improvement

The improvement in fit is entirely attributable to the time dependence of the extrinsic contribution
to H(z). This contribution naturally weakens with expansion and therefore produces a late-time
slope that differs from that of a constant A term. No tuning is required to enforce this behavior; it

follows directly from the assumed embedding structure.
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Importantly, the comparison is sensitive only to geometric distances and expansion rates:

DM(Z), DH(Z), Dv(z),

all of which are integrals or algebraic functions of H(z). The fact that a purely geometric mod-
ification alters these observables in the direction favored by the data indicates that the observed

tension may be ontological rather than dynamical in origin.

19.4 Conceptual Implications

The result highlights a key conceptual point: observational signatures commonly attributed to dark
energy need not imply the existence of a new physical substance. Instead, they may reflect how
spacetime is embedded, constrained, or influenced by external geometric structure.

From this perspective, the DESI comparison does not suggest a need for additional physics, but
rather suggests that the standard assumption of intrinsic expansion may be unnecessarily strong.
A framework in which expansion is induced rather than fundamental is capable of reproducing, and

in this case slightly improving upon, the observed late-time geometry.

19.5 Summary

In summary, the DESI BAO comparison shows that a geometrically induced expansion history,
derived without new dynamical components and without early—time modification, is consistent
with current data and marginally favored over a constant cosmological constant in terms of fit
quality. The significance of this result lies not in its statistical strength, but in its economy: the

data respond to geometry alone.

20 Supernova Comparison: Pantheon+SHOES

Data and implementation note. All supernova results reported in this section are computed
directly from the Pantheon+SHOES.dat compilation using the columns zcyp (redshift), pops (dis-
tance modulus), and the diagonal uncertainty o,. Model predictions for p(z) are evaluated by
numerically integrating the corresponding expansion histories and forming the luminosity distance
and distance modulus without any parameter fitting, scanning, or optimization. The only nui-
sance treatment applied is an optional analytic elimination of a single constant magnitude offset,
as described explicitly below.

Type la supernovae constrain the luminosity—distance relation and therefore the integrated
expansion history. Within Ontology Black, the supernova prediction follows from the induced ex-
pansion rate and the standard geometric mapping to distances. Given an induced Hubble parameter
H(z), the luminosity distance is

* ed?

du(x) = (1+2) | g, (117)
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and the corresponding distance modulus is

dr(z)
=51 25. 118
p(z) ng( Mpe ) + (118)
Residuals are defined as
Ap(z) = pmodel (2) — Hobs(2)- (119)

Equations ((117)—(119]) correspond to Eqs. (117)—(119) of the Ontology Black manuscriptm

20.1 Models and Fixed Parameter Choices

For the late-time supernova diagnostic, we adopt the minimal Ontology Black expansion history
H?(2) = H§ [Qn(1 4 2)° + Qexe (1 + 2)7] (120)

which is the late—time restriction of the full Ontology Black form (Eq. (108) with €22 = Q¢ = O)E|

Following the manuscript’s late—time comparison choice, we fix
Q= 0.3, Qext = 0.7, ~v = 0.4, (121)

with no scanning, fitting, or tuning of these parameters.

As a baseline, we use flat ACDM (radiation neglected at late times),
Hicpm(2) = Hf [Qn(14+2)° +Qa], Qa=1-Qp, (122)
with the same fixed €2,,, and the same numerical integration procedure used to evaluate Eq. (117)).

20.2 Dataset and Diagonal Likelihood

We compare both models to the Pantheon+SHOES compilation using zoump (redshift), pops (distance
modulus), and a diagonal uncertainty o,,. For each supernova we compute fimodel(2:) via Egs. (117)—

(118)) and form the diagonal chi-square

N
X2(A) _ Z [Mmodel(zi) - gobs(zi) B A]Q, (123)

i=1 T i

where A is a constant magnitude (intercept) offset representing the standard supernova absolute-

scale degeneracy (equivalently, the (M, Hp) normalization degeneracy).

'See Egs. (117)-(119) in Sec. 20 of the Ontology Black PDF.
2See Eq. (108) in Sec. 18.2 of the Ontology Black PDF.
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20.3 Analytic Offset Marginalization (Standard SN Comparison)

Rather than fitting any cosmological parameters, we eliminate the single nuisance offset A analyt-

ically. Define

1
d; = ftmodel (Zi) — Mobs (%), w; = ——. (124)
Ol
Then Eq. (123]) becomes
N
X(A) =) wi(di — A (125)
=1
Taking the derivative and setting it to zero,
dx? N
K= —2;% (di — A) =0, (126)
N
A =1 Widi
= A= Z:Nliw (127)
D i1 Wi

Substituting A yields the minimized chi-square, anin = XQ(A). Because one nuisance degree of

freedom is eliminated, the effective dof is N — 1.

Results (Offset Marginalized). Using N = 1701 supernovae and fixed parameters Hy =
70 kms~! Mpc™!, Q,, = 0.3, (Qext,y) = (0.7,0.4) for Ontology Black, and Q5 = 0.7 for ACDM,
the analytic best-fit offsets are

Aop = +0.075996 mag,  Axcpm = +0.098705 mag, (128)
and the minimized chi-squares are

op = 812.026615, (129)
Xacpum = 831.075646, (130)

with dof = 1700 in both cases. The difference
AX? = Xicpum — Xop = 19.049031 (131)

favors Ontology Black under the standard offset-marginalized construction.
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20.4 No-Offset Stress Test (Auxiliary Diagnostic)

For completeness, we also evaluate a stricter auxiliary diagnostic in which the offset parameter is
not introduced, i.e. we set A =0 in Eq. (123) and compute

N

2 . 2 : [Mmodel(zi) — ,Uobs(zi)}2
XA=0 = P) . (132)
i—1 T i

In this construction, dof = N.

Results (No Offset). With the same fixed parameters and N = 1701,

XoB, A—o = 1037.087177, (133)
XACDM, a—o = 1210.737994, (134)

so that
AXQA:O = X?XCDM,A:O - X2OB,A=O = 173.650817. (135)

20.5 Scope and Interpretation

The offset-marginalized result in Eq. is the primary supernova comparison because it matches
standard Hubble-diagram practice: supernovae constrain the shape of p(z) as a function of redshift
while a single intercept parameter absorbs the absolute-scale degeneracy. The no-offset result in
Eq. is retained as an auxiliary stress test of the fixed normalization implied by the chosen

parameterization and the adopted Hj value.

20.6 Joint BAO+SN Comparison in Terms of Ay?

To avoid sensitivity to absolute y? scaling conventions across diagnostics, we report combined

performance using only the model-comparison difference
Ax? = x*(ACDM) — x*(OB), (136)

computed under identical likelihood constructions for both models.
For Pantheon+SHOES supernovae with analytic elimination of a single constant magnitude
offset, we obtain
Ay = 19.049031, (137)

favoring Ontology Black in the supernova Hubble-diagram geometry. For DESI GCcomb BAO

with analytic marginalization over the sound-horizon scale via o = 1/r4, we obtain

AxEao = 3.552622. (138)
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Since the joint diagnostic is constructed additively, ijoint = X%N + X% A0 the combined model-

comparison difference is
AXiint = AxEn + AXBao = 19.049031 + 3.552622 = 22.601653. (139)

Thus, under fixed manuscript parameters and without any fitting or scanning, the joint BAO+SN

comparison favors Ontology Black at the level of Aijoint ~ 22.6.

21 Scope and Limitations

The comparison presented in this work is intentionally narrow in scope. Its purpose is not to
establish a complete cosmological model, but to test whether a geometrically induced expansion
history is compatible with, and responsive to, late-time observational data. Several important

limitations therefore apply.

21.1 Restricted Dataset

Only late-time geometric probes are considered, specifically baryon acoustic oscillation (BAO)
measurements and Type Ia supernova distance-redshift data. No cosmic microwave background,
weak lensing, or growth-rate data are included. As a result, the comparison probes exclusively the
geometric expansion history rather than the full cosmological parameter space.

In particular, early—universe physics is not constrained by this analysis. Parameters such as
the sound horizon scale are marginalized rather than predicted, and no attempt is made to match

cosmic microwave background observables.

21.2 Fixed Matter Content

The matter density is held fixed throughout the comparison. Allowing 2, to vary may alter the
relative fit quality and is deferred to future work. The present analysis therefore isolates the effect
of the expansion history alone rather than exploring degeneracies between geometry and matter

content.

21.3 Single-Point Parameter Choice

The Ontology Black expansion history is evaluated at a single representative parameter choice for
the extrinsic contribution. No parameter scan or optimization is performed. Consequently, the
reported improvement in fit should be interpreted as demonstrative rather than optimized.

A more complete analysis would explore the parameter space governing the time dependence

of the extrinsic term and assess whether the observed preference persists across a range of values.
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21.4 Interpretation of Statistical Preference

The observed reduction in x? is modest and does not constitute decisive evidence in favor of
Ontology Black over ACDM. The result indicates compatibility and mild geometric preference
within the specific context of BAO geometry alone. It does not rule out ACDM, nor does it

establish the correctness of any specific ontological interpretation.

21.5 Model Completeness

Ontology Black is presented as an ontological and geometric framework rather than as a com-
plete cosmological model. Issues such as perturbation growth, structure formation, reheating, and
detailed early—time dynamics are not addressed here. The present analysis should therefore be

understood as a proof of viability rather than a finished theory.

21.6 Summary of Limitations

In summary, the analysis demonstrates that a purely geometric modification of the expansion
history is compatible with current BAO data and can modestly improve the fit relative to a constant
cosmological constant. However, broader claims regarding cosmological evolution, fundamental
physics, or model completeness require substantially more work and a wider range of observational
tests. The robustness analysis establishes structural stability of the geometry—observable mapping

but does not constitute a precision fit to cosmological data.

22 Optional Cyclic Completion via Extrinsic Release

Ontology Black does not require cyclicity to explain late-time cosmic acceleration or to remain
consistent with current observations. The framework is fully viable as an open, ever-expanding
geometry governed by a weakening extrinsic pull. Nevertheless, the geometric origin of the extrinsic
contribution naturally admits a global completion in which the pull terminates at finite scale factor,
leading to a contraction phase and a smooth bounce. This section presents such a completion as an
optional extension, addressing the long-term fate of the universe without modifying the observable-
epoch predictions tested against DESI BAO data.

22.1 Extrinsic Release Mechanism

During the observable epoch, the extrinsic contribution to the expansion rate is well approximated

by a power-law form,
-
2 2( @
Hext(a’) = HO <) ) (140)
Ay
with 0 < v < 1. This form ensures late-time dominance while preserving early-time agreement with
standard cosmology. However, a pure power-law never vanishes at finite scale factor and therefore

does not produce a natural termination of the extrinsic pull.
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To allow for geometric release, we introduce an exponential suppression:

9 5 [ a . a
Hext(a) = HO ; €xp 7(1 | ; (141)
* re

where a. denotes the release scale. This functional form:

e Reduces to the power-law behavior for a < a,e,
e Suppresses the extrinsic contribution for a 2 ayel,

e Effectively vanishes for a > a.q.

The release scale a,e is determined by the parent substrate geometry and is not constrained
by current observations. For a., > 1, the power-law approximation remains valid throughout the

observable epoch.

22.2 Post-Release Dynamics

We define the release epoch by a = aye), at which the total Hubble rate is

H2 = HE |Qpard + Qegage | (142)

For a > aye, the extrinsic contribution is negligible and the expansion is governed solely by
matter:

H%(a) = H3Qma 3. (143)

Since the matter component is pressureless, the universe decelerates according to

4
i= —%Gpma <. (144)

22.3 Turnaround Condition

At the release epoch, the expansion contains kinetic energy associated with the excess Hubble rate
beyond the matter-only solution. We define an effective kinetic energy density as

2 2 -3 3H -y -1
Hy — HiQpa j] = —2Q : (145)

3
Pkin = % [ T rel | — 876 extlye €

As the universe expands beyond a., this inherited kinetic energy is converted into gravitational
potential associated with matter dilution. The turnaround occurs when the expansion rate vanishes,
H(aturn) = 0, implying

pm(aturn) - pm(arel) — Pkin- (146)

Using p, o< a™3, the turnaround scale factor is therefore

~1/3

Q _
Qturn = Grel |1 — Qext af’elveil . (147)
m
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A finite turnaround requires the bracketed term to be positive, which places a consistency bound
on ape and . This condition is easily satisfied for release scales well beyond the observable epoch.

Physically, this condition expresses the requirement that the expansion momentum inherited
from the extrinsic pull not exceed the total gravitational binding capacity of the matter content,
ensuring that matter gravity can eventually halt and reverse the expansion without invoking any
sign reversal of the extrinsic term.

It is important to note that the existence of a turnaround is conditional rather than generic. For
the illustrative parameter values adopted in the DESI comparison (€, = 0.3, Qext = 0.7, v = 0.4),
the turnaround condition requires aye < (’)(1)E| . If instead the release scale satisfies azq > 1, the
inequality is not met and the universe continues to expand indefinitely. In this regime, Ontology
Black describes an open, ever-expanding geometry, and the cyclic completion discussed here does
not occur. Cyclic behavior therefore represents a conditional global extension of the framework,
dependent on specific relationships among the extrinsic amplitude, its decay rate, and the release

scale, and is not implied by the late-time geometric agreement with DEST BAO data.

22.4 Contraction Phase

For a > atym, the universe contracts under matter gravity. The Friedmann equation remains
H? = HXQa ™3, (148)

with H = a/a < 0.

The scale factor evolves as

. 2/3
a(t) = avum (t“”‘t> , (149)

tt urn

valid until the bounce phase is reached.

22.5 Bounce and Re-Engagement

As contraction proceeds, the matter density and extrinsic curvature increase. Geometric regularity

of the embedding enforces bounded extrinsic curvature via the Israel junction condition,

/ﬁ?% 1
K,, = - Sy — §Sgw, . (150)

At a critical scale factor apounce, these geometric constraints induce a smooth reversal of the

contraction. Near the bounce, the scale factor may be approximated by

a(n) = ag <1 + Z;)p (151)

3For the illustrative parameter values used in the DESI comparison (2, = 0.3, Qext = 0.7, v = 0.4), the
turnaround inequality evaluates to are1 < 1.06. This numerical value is parameter-dependent and is quoted only to

~

illustrate the order-unity nature of the bound, not as a prediction of an imminent release or turnaround.

28



where 1, characterizes the temporal width of the bounce.
Following the bounce, the embedded hypersurface re-enters a geometric configuration in which

extrinsic curvature again induces expansion. The same functional form for the extrinsic pull is

H(a) = H§ <a>_7 eXp(— ¢ > , (152)

A Qyel

restored,

initiating a new cycle.

22.6 Interpretation

This cyclic behavior does not require any sign reversal of the extrinsic term. Instead, cyclicity
emerges entirely from geometric release, momentum conservation, and bounded extrinsic curvature.
Crucially, this completion is not required for Ontology Black to explain late-time acceleration
or to remain consistent with observational data. It represents one natural global extension of
the framework, addressing the ultimate fate of the universe without altering its observable-epoch

predictions.

23 On the Apparent “Large” \? Scale in DESI BAO Fits

A recurring point of confusion in late—time BAO likelihood work is that the absolute values of
the best-fit x? can appear numerically “huge” (here, O(10%)), even when the model is behaving
normally. This is not a warning sign by itself. The key reason is that x? is extensive: it scales with

the number of effective constraints and with the precision of those constraints.

23.1 Why y? naturally reaches O(10*) for DESI BAO

The BAO likelihood is evaluated using a correlated data vector (often containing multiple redshift
bins and multiple distance combinations). With an observed vector ﬁobs, model vector 5model, and

covariance matrix C, the statistic is

— —

X2 = (Dobs - ﬁmodel)T Cil (Dobs - ﬁmodel)‘ (153)

If one imagines (purely heuristically) a case with N independent constraints each contributing
order—unity residuals in units of its uncertainty, one expects x? ~ O(N). In practice DESI provides
many tightly constrained geometric comparisons (even after compression), so an overall x? at the

level of 10* is not surprising on scale grounds alone.

Small fractional errors amplify y2. DESI BAO uncertainties are often sub-percent in the

distance ratios (e.g. o ~ 0.3%). A mismatch at the level of 0.1% corresponds to a residual of

— , = = ~0.111...
o 0.003 o 0.003 0.003 0.003%2  0.000009

A 0.001 <A)2 B <0.001> <0.001> ~0.001>  0.000001
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for just one effective constraint. Repeating this across many redshift bins and distance combina-

tions, the total x? rises quickly.

Correlations make coherent mismatches “count.” The inverse covariance is not diagonal.
As a result, correlated deviations can add coherently, and smooth shape mismatches (e.g. slope
differences in H(z)) are penalized across bins, further increasing the total x? compared to a naive

uncorrelated estimate.

23.2 Why marginalizing r; changes the interpretation, not the scale

Because BAO observables enter as ratios with the sound horizon, we marginalize the BAO scale by

treating

as a nuisance parameter. Marginalization removes (roughly) one global degree of freedom associated
with an overall calibration, but it does not (i) reduce the number of geometric constraints, (ii)
eliminate shape tension, or (iii) rescale all redshift-dependent residuals. Consequently, the post—
marginalization statistic is best interpreted as a shape—only geometric x2, and values near 10%

remain normal for a modern, high—precision BAO dataset.

23.3 What quantity actually matters for model comparison: Ay?

In this setting, the physically meaningful comparison between two models using the same data
vector and covariance is the difference in best-fit x2, not the absolute normalization.
In our DESI BAO run (with identical matter density assumptions and with r4 marginalized),

we obtained

XAcpum = 10581, (154)
X%)ntology Black ~ 10578, (155)
Ax? = 3.6, (156)

which means that across many tightly constrained geometric comparisons, the Ontology Black
expansion history yields a modest but systematic improvement in the late-time shape match. This
is the correct scale and the correct object to interpret; the absolute magnitude y? ~ 10% is an
expected consequence of precision and constraint count, not an indicator of a pathological fit.
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Explicit Evaluation of Geometric Invariants and Robustness

Derivations

This appendix records the full derivations underlying the robustness analysis presented in Section X.

No steps are omitted. The purpose of this appendix is archival completeness rather than narrative

flow.
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A.1 Extrinsic Curvature Decomposition

Let X be a timelike hypersurface embedded in a five-dimensional bulk with induced metric

h/_l,u = gABeéueB;/’ (157)
unit normal n4, and extrinsic curvature
Ky = e’eh Vanp. (158)

Under homogeneous and isotropic symmetry, the induced metric on ¥ takes the FLRW form
ds? = —dr? + a®(7) yiyda'da’. (159)
The extrinsic curvature decomposes as

K- (1), =V=r,
Ko = SUNN (160)
KS(T)hijv N)V:iaj'

The trace is therefore

K=W"K, =h"K.+h"K;. (161)

Using
AT = —1, hh;; =3, (162)

we obtain
K = —K,, + 3K,. (163)

A.2 Explicit Evaluation of K, K"

We compute

K K" = hhP K, Kop. (164)
Expanding by components,
K K" = h "R K2+ h9pF K K. (165)
Since 7T = —1,
RTThTTK2 = K2 (166)
For the spatial part,
K;j = Khij, (167)
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SO

hIWM K K = K2 h9hF by

Using
B hag = o,
we find
W R highyy = 6l6% = 6] = 3.
Thus,

2 2
K, K" = K7 +3K;.
The corresponding dimensionless invariant is

7= KuwK"™ _ K% +3K?

A.3 Derivative Invariant Construction

We next consider invariants constructed from derivatives of the trace K.

Define ,
7= W (V,K)(V,K)
= 7o4 :
Dimensional analysis yields
(K] =1L,
VK] = L2
[ (VW K)(VoK)] = L7,
so [J]=1.
Under homogeneity,
VK =0,

and only the temporal derivative survives:

Since h™ = —1,

Therefore,

K2 (=K, +3K;)?

(168)

(169)

(170)

(171)

(172)

(173)

(174)
(175)
(176)

(177)

(178)

(179)

(180)



A.4 Fully Perturbed Expansion Rate
Including both algebraic and derivative corrections, the effective expansion rate is
Heg(t)=aK(T)[14+€Z(1) =0 TJ(7)],

with |e] < 1 and |§] < 1.

Substituting explicit expressions,

K2 +3K? 1 [(dK\?
He = aK 1 TT S o 57 '
i(7) = aK(r) 11+ e p s ~ 0% < dr >

A.5 Expansion Stability Condition

Late-time expansion requires
H g (7’ ) > 0.

Assuming o > 0 and K(7) > 0 at late times, this reduces to

1+eZ—-67 > 0.

Since Z > 0 and J < 0, sufficiently small ¢ and § preserve monotonic expansion.

A.6 Distance—Redshift Relation with Corrections

The redshift satisfies
az
dr

Substituting the perturbed expansion rate,

= —(1+ 2z) Heg (7).

% — (1 +2)aK(r) 1+ eI -5J].

To first order in perturbations,

dr 1
%:—W[I—EI—H&T].

= [

The comoving distance is
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(182)

(183)

(184)

(185)

(186)

(187)
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Using a(7') = ap/(1 + Z’), we obtain

1 =1 / ' !
X(Z):aooé/o m[l—el(z)—ké](z)]dz. (189)

This expression makes explicit that admissible geometric perturbations deform the distance—

redshift relation smoothly without altering its qualitative structure.
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