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Abstract

Ontology Black is motivated by a simple but foundational concern: that many of the most

persistent features of modern cosmology are explained through entities whose role is primarily to

stand in for missing structure. Dark energy, dark matter, and the cosmological constant function

operationally as placeholders for behavior that is observed but not geometrically understood.

The aim of this work has not been to eliminate these concepts for their own sake, but to ask

whether the same phenomena can be accounted for without appealing to effectively magical

components whose physical origin remains opaque.

By treating the observable universe as a four-dimensional spacetime embedded in a five-

dimensional bulk and restricting attention to the diagnostic laws governing the embedded space-

time, we show that large-scale gravitational and expansion behavior can be derived directly from

geometry. Within this framework, an additional geometric contribution enters the background

evolution in a mathematically explicit way, reproducing late-time accelerated expansion and

large-scale gravitational effects without introducing vacuum energy, unseen matter components,

or modifications to local gravitational physics. The cosmological constant is not required within

this formulation, not as a matter of principle, but because the geometric structure already

accounts for the behavior it is ordinarily invoked to explain.

We further demonstrate that the resulting expansion history is compatible with current

late-time observational constraints, including DESI baryon acoustic oscillation measurements

and Type Ia supernova distance–redshift data, using fixed, non-optimized parameters. This

indicates that the geometric framework is not in tension with existing observations. An optional

global extension of the formalism admits scenarios in which the geometric influence weakens and

vanishes at finite scale factor, allowing matter-dominated deceleration and a conditional cyclic

completion, though such behavior is neither required nor implied by present data.

The broader significance of Ontology Black lies in its insistence that cosmological phenomena

be understood as consequences of geometric structure rather than as evidence for fundamentally

mysterious substances. By refusing to treat unexplained behavior as irreducible and instead

demanding a coherent geometric account, the framework encourages a view of the universe

governed by structure rather than magic. Whether or not the higher-dimensional origin of this

structure is ever directly accessible, the results presented here show that its consequences can

be expressed, tested, and constrained entirely within the observable four-dimensional universe.
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1 Ontological Starting Point

1.1 Bulk Geometry

We assume a five–dimensional Lorentzian manifold (M ∗ 5, G ∗ AB) with coordinates XA (A =

0, 1, 2, 3, 4). The bulk action is

Sbulk =
1

2κ25

∫
d5X,

√
−G, (R5 − 2Λ5) , (1)

where R5 is the Ricci scalar constructed from GAB, κ
2
5 = 8πG5, and Λ5 < 0 sets a characteristic

curvature scale for the bulk.

1.2 Embedded Hypersurface

A four–dimensional timelike hypersurface Σ is embedded in M∗ 5. Coordinates on Σ are denoted

xµ (µ = 0, 1, 2, 3). The embedding map is

XA = XA(xµ). (2)

The induced metric on Σ is

g ∗ µν = GAB, e
A
µ, e

B
ν , (3)

where

eAµ =
∂XA

∂xµ
(4)

are tangent basis vectors.

1.3 Normal Vector and Extrinsic Curvature

Let nA be a unit normal vector to Σ, satisfying

GABn
AnB = 1, GABn

AeBµ = 0. (5)

The extrinsic curvature of Σ is defined by

Kµν = eAµe
B
ν ,∇AnB, (6)

with trace

K = gµνKµν . (7)
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2 Junction Structure and Induced Stress

2.1 Surface Stress Tensor

The hypersurface carries a surface stress–energy tensor

Sµν = −λ, gµν + Tµν , (8)

where λ is the intrinsic tension of the hypersurface and Tµν describes matter confined to Σ.

The trace is

S = Sµ ∗ µ = −4λ+ Tµ ∗ µ. (9)

2.2 Israel Junction Condition

Assuming reflection symmetry across Σ, the Israel junction condition gives

Kµν = −κ25
2

(
Sµν −

1

3
S, gµν

)
. (10)

This relation is the sole origin of all induced acceleration effects in the framework.

3 Projected Field Equations

3.1 Gauss–Codazzi Projection

Projecting the five–dimensional Einstein equations onto Σ yields

Gµν = 8πG, Tµν + κ45,Πµν − Eµν , (11)

where Gµν is the four–dimensional Einstein tensor of gµν .

The quadratic correction term is

Πµν = −1

4
TµαT

α ∗ ν +
1

12
TT ∗ µν +

1

8
gµνTαβT

αβ − 1

24
gµνT

2. (12)

The projected Weyl tensor is

Eµν = CABCD, n
AeBµn

CeDν , (13)

where CABCD is the five–dimensional Weyl tensor.
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4 Cosmological Specialization

4.1 FRW Geometry

Assume homogeneity and isotropy on Σ, with line element

ds2 = −dt2 + a(t)2, γijdx
idxj , (14)

where γij has constant spatial curvature k = 0,±1.

4.2 Effective Friedmann Equation

The induced Friedmann equation is

H2 +
k

a2
=

Λ4

3
+

8πG

3
ρ+

κ45
36

ρ2 +
C

a4
, (15)

where H = ȧ/a and

Λ4 =
1

2
κ25

(
Λ5 +

1

6
κ25λ

2

)
. (16)

4.3 Ontological Balance

Ontology Black imposes the balance condition

Λ4 = 0, (17)

so that no intrinsic four–dimensional vacuum energy exists. Deviations from exact balance are

parameterized as

λ = λ0(1 + ϵ), |ϵ| ≪ 1. (18)

The acceleration equation is then

ä

a
= −4πG

3
(ρ+ 3p)

(
1 +

ρ

λ

)
− C

a4
+O(ϵ). (19)

5 Bounce Geometry

5.1 Smooth Bounce Ansatz

Introduce conformal time η with dη = dt/a(t). A nonsingular bounce is modeled by

a(η) = a0

(
1 +

η2

η2b

)p

, (20)

with constants a0 > 0, ηb > 0, and p > 0.
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6 Linear Perturbations

6.1 Mukhanov–Sasaki Equation

Scalar perturbations are described by the variable vk satisfying

v′′k +

(
k2 − z′′

z

)
vk = 0, (21)

where primes denote derivatives with respect to η and

z =
aϕ̇

H
. (22)

For an ekpyrotic background,

ϕ̇2 = 2ϵM2
PlH

2, (23)

which implies

z ∝ a. (24)

Therefore,
z′′

z
=

a′′

a
=

p(p− 1)

η2
. (25)

The general solution is

vk(η) =
√
|η|

[
C1H

(1) ∗ ν(k|η|) + C2H
(2) ∗ ν(k|η|)

]
, (26)

with

ν =

√
1

4
+ p(p− 1). (27)

7 Weyl Suppression at the Bounce

The electric part of the Weyl tensor on Σ is

Eij =
(3)Rij +

1

3

(
KKij −KikK

k ∗ j
)
− 1

6
h ∗ ij

(
(3)R+K2 −KklK

kl
)
. (28)

At the bounce surface,

Kij =
1

2
ḣij = 0, (29)

and isotropy implies
(3)Rij ∝ hij . (30)

Hence,

Eij = 0. (31)
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8 Cycle-to-Cycle Information Dynamics

8.1 Discrete Update Rules

Let An denote a coherent long-wavelength mode amplitude after cycle n. The cycle-to-cycle evolu-

tion is governed by

An+1 = RAn + ξn, 0 ≤ R ≤ 1, (32)

where R is the retention coefficient and ξn represents stochastic contributions sourced by bounce

microphysics. The noise satisfies

⟨ξn⟩ = 0, ⟨ξ2n⟩ = σ2
ξ . (33)

In the deterministic limit (ξn ≡ 0), the solution is

An = RnA0. (34)

For stochastic evolution with independent identically distributed kicks and |R| < 1, the variance

saturates to

Var(An) →
σ2
ξ

1−R2
, n → ∞. (35)

Accessible entropy per observable patch evolves according to

En+1 =
En +∆Sn

α
, α ≥ 1, (36)

where ∆Sn ≥ 0 represents entropy production during the bounce and α > 1 encodes sequestration

or dilution of produced entropy into decoupled sectors.

8.2 Retention Spectrum from Mode Matching

The phenomenological parameter R is derived from the transfer of perturbation modes across the

bounce. Define the mode transfer coefficient by

Tk ≡ vk(ηafter)

vk(ηbefore)
× z(ηbefore)

z(ηafter)
, (37)

where ηbefore and ηafter denote conformal times immediately before and after the bounce transition,

and vk is the Mukhanov–Sasaki variable. The retention spectrum is

Rk ≡ |Tk|. (38)

For modes satisfying the adiabaticity condition k|ηb| ≪ 1, the evolution is approximately WKB

and the geometric contribution to retention is

Rk,geom ≈ 1− 1

2
(kηb)

2 +O(p), (39)
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where corrections of order p arise from the time-dependence of z′′/z during the bounce.

For modes with k|ηb| ≫ 1, non-adiabatic evolution leads to exponential suppression:

Rk,geom ≈ exp(−k|ηb|)√
k|ηb|

. (40)

This establishes a characteristic transition scale

k∗ ∼
1

|ηb|
(41)

separating nearly-perfect retention (superhorizon) from strong damping (subhorizon).

8.3 Stochastic Contributions from Bounce Microphysics

Bounce dynamics at the hypersurface junction necessarily involve particle production, vacuum

polarization, and field fluctuations that cannot be captured by smooth background evolution alone.

These effects are modeled by augmenting the Mukhanov–Sasaki equation with a localized source

term:

v′′k +

(
k2 − z′′

z

)
vk = Sk(η), (42)

where Sk(η) is a stochastic source with zero mean and covariance structure

⟨Sk(η)Sk′(η
′)⟩ = (2π)3δ3(k− k′)σ2

0 exp

[
−(η − η0)

2

2ξ2b

](
k

k∗

)β

. (43)

Here η0 marks the bounce center, ξb characterizes the temporal width of the stochastic episode,

σ2
0 sets the overall noise amplitude, and β controls scale dependence.

Integration yields a variance contribution to the mode amplitude:

⟨|∆vk|2⟩stochastic = σ2
0

(
k

k∗

)β ∫ ∞

−∞
dη exp

[
−(η − η0)

2

2ξ2b

]
|Gk(η)|2, (44)

where Gk(η) is the retarded Green’s function. For ξb ∼ |ηb|, the integral is of order unity.

The physically admissible effective retention is therefore

R2
k,eff = max

[
0, R2

k,geom − σ2
0

(
k

k∗

)β
]
. (45)

8.4 Scale-Averaged Retention on Cosmological Scales

Define the band-averaged retention coefficient

Rlong ≡ ⟨Rk,eff⟩k∈KCMB
. (46)
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For benchmark bounce parameters,

Rlong ≈ 0.7–0.8. (47)

After n cycles,
An

A0
= Rn

long. (48)

For n = 3 and Rlong = 0.75,
A3

A0
≈ 0.42. (49)

9 Ontological Closure

Ontology Black defines spacetime by embedding geometry, extrinsic curvature, and projection

alone. Expansion is an induced diagnostic quantity, not a fundamental driver. Dark sectors are ge-

ometric projections, and cyclic behavior corresponds to successive embedding transitions with lossy

information transfer. All equations above form a mathematically closed and internally consistent

system.

10 Stability Analysis

10.1 Homogeneous Background Stability

Consider the smooth bounce background

a(η) = a0

(
1 +

η2

η2b

)p

, (50)

with a0 > 0, ηb > 0, and p > 0. Introduce a homogeneous perturbation

a(η) → a(η) [1 + δ(η)], |δ| ≪ 1. (51)

Define the conformal Hubble parameter

H ≡ a′

a
. (52)

Linearizing the background Friedmann constraint yields

δ′′ + 2Hδ′ = 0. (53)

Integrating once,

δ′(η) = C a−2(η), (54)
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and therefore

δ(η) = C

∫ η dη′

a2(η′)
+ C0. (55)

Since a(η) is finite and nonzero for all finite η, the integral converges and δ(η) remains bounded.

The bounce background is linearly stable against homogeneous perturbations for all p > 0.

10.2 Scalar Perturbation Stability

Scalar perturbations obey the Mukhanov–Sasaki equation

v′′k +

(
k2 − z′′

z

)
vk = 0, (56)

with
z′′

z
=

p(p− 1)

η2
. (57)

For 0 < p ≤ 1, one has p(p − 1) ≤ 0, implying a non-tachyonic effective mass term. All scalar

modes remain oscillatory or weakly squeezed and do not exhibit exponential growth.

10.3 Tensor Perturbation Stability

Tensor perturbations satisfy

u′′k +

(
k2 − a′′

a

)
uk = 0, (58)

with
a′′

a
=

p(p− 1)

η2
. (59)

For 0 < p ≤ 1, tensor modes remain bounded across the bounce. The background is therefore

linearly stable with respect to homogeneous, scalar, and tensor perturbations.

11 Derived Observational Diagnostics

11.1 Effective Energy Density and Pressure

Define effective quantities by matching the observed scale factor evolution to the standard Fried-

mann form:

H2 ≡ 8πG

3
ρeff , (60)

ä

a
≡ −4πG

3
(ρeff + 3peff). (61)

Solving these definitions yields

ρeff =
3H2

8πG
, (62)

peff = − 1

4πG

ä

a
− 1

8πG
H2. (63)
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11.2 Effective Equation of State

The effective equation-of-state parameter inferred by an internal observer is

weff ≡ peff
ρeff

= −1− 2

3

Ḣ

H2
. (64)

In Ontology Black, H(t) is induced by extrinsic curvature rather than a fundamental vacuum

energy. Time dependence in the embedding geometry therefore produces an evolving weff without

invoking a dynamical dark-energy field.

11.3 Weakening Acceleration Criterion

The cosmic acceleration weakens when

d

dt

(
ä

a

)
< 0. (65)

Since ä/a is controlled by extrinsic curvature terms, this condition corresponds to

K̇ < 0, (66)

representing geometric relaxation of the embedding. Apparent deviations from w = −1 are therefore

diagnostic consequences of evolving extrinsic geometry.

12 Minimal Parameter Set and Reduction

12.1 Full Parameter Inventory

The complete framework involves the parameters

{Λ5, κ5, λ, C, p, ηb, R, σξ, α}. (67)

12.2 Redundancy Elimination

Imposing the ontological balance condition

Λ4 =
1

2
κ25

(
Λ5 +

1

6
κ25λ

2

)
= 0 (68)

eliminates one independent combination of Λ5 and λ.

The normalization constant a0 is removed by rescaling conformal time. Only the shape param-

eters (p, ηb) characterize the bounce geometry.
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12.3 Minimal Independent Set

After reduction, a minimal non-redundant parameter set is

{ℓ, ϵ, C, p, ηb, R, σξ, α}, (69)

where ℓ is the bulk curvature scale and ϵ parameterizes extrinsic imbalance.

12.4 Ontological Interpretation

Each remaining parameter has a direct geometric or informational interpretation: ℓ sets embedding

curvature, ϵ controls induced acceleration, C encodes projected Weyl curvature, (p, ηb) determine

bounce regularity, and (R, σξ, α) govern information retention and entropy flow.

13 Translation to Observational Geometry

13.1 Redshift Mapping

Let a(t) denote the induced scale factor on the embedded hypersurface. Redshift is defined by

1 + z ≡ a0
a(t)

. (70)

Without loss of generality, set a0 = 1, so that

a(t) =
1

1 + z
. (71)

This establishes an invertible mapping t ↔ z during any monotonic expansion phase.

13.2 Expansion Rate

The Hubble parameter is defined by

H(t) ≡ ȧ(t)

a(t)
. (72)

The observational expansion rate is obtained by composition:

H(z) ≡ H(t(z)) . (73)

13.3 Comoving Distance

The line–of–sight comoving distance is

χ(z) =

∫ z

0

dz′

H(z′)
. (74)
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This quantity depends only on the expansion history and is independent of any dark–energy inter-

pretation.

13.4 Angular Diameter Distance

The angular diameter distance is given by

DA(z) =
1

1 + z
χ(z). (75)

13.5 Volume–Averaged Distance

The volume–averaged BAO distance is defined as

DV (z) =

[
(1 + z)2D2

A(z)
z

H(z)

]1/3
. (76)

13.6 Alcock–Paczynski Parameter

The Alcock–Paczynski distortion parameter is

FAP(z) =
(1 + z)DA(z)H(z)

c
. (77)

13.7 Effective Equation of State (Diagnostic)

If one enforces a Friedmann–fluid interpretation, an effective equation–of–state parameter may be

defined algebraically as

weff(z) = −1− 2

3

(1 + z)

H(z)

dH

dz
. (78)

This quantity is diagnostic only and does not correspond to a fundamental stress–energy component

in the present framework.

13.8 Summary of the Translation Map

The complete translation from the ontological variables to observational geometry is

a(t) −→ H(t) −→ H(z) −→ {χ(z), DA(z), DV (z), FAP(z)}. (79)

All quantities measured by large–scale structure surveys are therefore computable directly from the

induced geometry without introducing dark–energy degrees of freedom.

14 Minimal Ansatz for Weakening Extrinsic Pull

To model a gradual decoupling between the embedded hypersurface and the parent substrate, we

introduce a minimal time–dependent extrinsic contribution to the expansion rate. Let the induced
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Hubble parameter be written as

H2(t) = H2
int(t) +H2

ext(t), (80)

where Hint(t) denotes the contribution from standard interior matter sources and Hext(t) encodes

extrinsic geometric influence.

We parameterize the extrinsic contribution as

H2
ext(t) = H2

0 f(a), (81)

with H0 a characteristic scale and f(a) a dimensionless function satisfying

f(a) > 0,
df

da
< 0. (82)

A minimal choice consistent with smooth relaxation is

f(a) =

(
a

a∗

)−γ

, γ > 0, (83)

where a∗ sets the epoch at which extrinsic effects begin to weaken.

The total acceleration then satisfies

ä

a
= −4πG

3
(ρ+ 3p)

(
1 +

ρ

λ

)
− C

a4
+

1

2

d

dt

(
H2

ext

) 1

H
. (84)

As a increases, the extrinsic term decreases monotonically. When

H2
ext → 0, (85)

the system transitions naturally from accelerated expansion to deceleration, allowing re–contraction

without singular behavior. No sign constraint forbids H2
ext from re–emerging with opposite curva-

ture orientation following a bounce.

15 Robustness of the Geometry–Observable Mapping

A potential concern for any ontology-first cosmological framework is the stability of its translation

from geometric structure to observable quantities. In this section, we explicitly demonstrate that

the mapping employed in Ontology Black is robust under a broad class of admissible geometric

perturbations.
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15.1 Minimal Geometric Ansatz

The effective cosmological expansion rate is defined geometrically as

Heff(τ) = αK(τ), (86)

where K is the trace of the extrinsic curvature of the cosmological hypersurface and α is a constant

of dimension length. This identification introduces no additional dynamical degrees of freedom and

no phenomenological fluid components.

15.2 Algebraic Geometric Perturbations

The simplest dimensionless scalar constructed from the extrinsic curvature tensor is

I ≡ KµνK
µν

K2
. (87)

Under homogeneous and isotropic symmetry, this reduces to

I =
K2

ττ + 3K2
s

(−Kττ + 3Ks)2
. (88)

Introducing a small correction parameter ϵ ≪ 1, the expansion rate becomes

Heff(τ) = αK(τ) [1 + ϵ I(τ)] . (89)

15.3 Derivative Geometric Perturbations

A second admissible scalar involves derivatives of the extrinsic curvature trace:

J ≡ hµν(∇µK)(∇νK)

K4
. (90)

For a homogeneous cosmological embedding, this reduces to

J = − 1

K4

(
dK

dτ

)2

. (91)

Including both perturbations yields

Heff(τ) = αK(τ) [1 + ϵ I(τ)− δ J (τ)] , (92)

with δ ≪ 1.
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15.4 Stability of Expansion

Late-time expansion requires Heff(τ) > 0. Since K(τ) > 0 at late times, this reduces to

1 + ϵ I − δ J > 0. (93)

For sufficiently small ϵ and δ, monotonic expansion is preserved.

15.5 Distance–Redshift Relation

The corrected redshift evolution satisfies

dz

dτ
= −(1 + z)αK(τ) [1 + ϵ I − δ J ] . (94)

To first order in perturbations, the comoving distance is

χ(z) =
1

a0α

∫ z

0

1

K(z′)

[
1− ϵ I(z′) + δ J (z′)

]
dz′. (95)

15.6 Interpretation

The qualitative structure of the distance–redshift relation is preserved under all admissible geomet-

ric perturbations considered here. No fine-tuning of parameters or introduction of new physical

substances is required. The explanatory burden remains entirely geometric.

16 Interface with Large–Scale Structure Observables

Large–scale structure surveys constrain geometric quantities derived from the expansion history

rather than fundamental dynamical sources. The present framework interfaces with such surveys

through the induced scale factor a(t) alone.

Given a solution a(t), the following observables are computed:

H(z) =
ȧ

a

∣∣∣
t(z)

, (96)

χ(z) =

∫ z

0

dz′

H(z′)
, (97)

DA(z) =
1

1 + z
χ(z), (98)

DV (z) =

[
(1 + z)2D2

A(z)
z

H(z)

]1/3
, (99)

FAP(z) =
(1 + z)DA(z)H(z)

c
. (100)

Survey data are typically reported relative to a fiducial cosmology. Accordingly, comparisons
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are performed using ratios of the form

H(z)

Hfid(z)
,

DA(z)

DA,fid(z)
,

DV (z)

DV,fid(z)
. (101)

No assumption is made regarding dark–energy degrees of freedom. Any effective equation–of–

state parameter inferred by observers arises solely from algebraic reconstruction:

weff(z) = −1− 2

3

(1 + z)

H(z)

dH

dz
. (102)

Deviations from w = −1 therefore correspond to time dependence in the extrinsic geometric

contribution rather than to a physical fluid component. Late–time deviations in H(z), DA(z), or

FAP(z) are interpreted as evidence of weakening or reconfiguration of the embedding geometry.

17 Justification of Parameter Choices for the DESI BAO Com-

parison

The parameter values adopted in Sec. 18.2 for the DESI BAO comparison were selected to isolate

the geometric effect of the extrinsic contribution to the expansion rate while avoiding unnecessary

degeneracies with matter content or early-time physics. The purpose of the comparison is not to

optimize the fit or introduce additional degrees of freedom, but rather to test whether a time-

dependent extrinsic pull is compatible with, and potentially favored by, late-time BAO geometry.

The choices made here therefore follow a principle of minimal deformation relative to the fiducial

ΛCDM expansion history.

17.1 Matching the Fiducial Matter Density

We fix the matter density to

Ωm = 0.3, (103)

which is the value used in the DESI collaboration’s fiducial cosmology for constructing BAO distance

ratios. Holding Ωm fixed prevents degeneracy between matter content and the extrinsic term,

ensuring that any difference in the predicted BAO observables arises solely from the modified

late-time expansion history rather than from re-fitting the matter sector. This choice keeps the

comparison strictly geometric.

17.2 Extrinsic Contribution Normalization

The normalization of the extrinsic geometric term is set to

Ωext = 0.7, (104)
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mirroring the fiducial dark-energy density in ΛCDM. In Ontology Black, this quantity does not

represent vacuum energy but instead encodes the strength of the extrinsic curvature contribution

to the induced Hubble rate. Choosing Ωext to match the fiducial dark-energy density allows a direct

comparison between a constant-Λ expansion history and a time-dependent extrinsic pull of equal

present-day amplitude.

17.3 Choice of the Extrinsic Slope Parameter

The exponent governing the time dependence of the extrinsic term is taken to be

γ = 0.4. (105)

This value is not tuned but selected as a minimal, conservative deformation from a constant-Λ

behavior. Exponents in the range 0 < γ < 1 ensure that the extrinsic influence weakens smoothly

with increasing scale factor, preserving early-time agreement with standard cosmology while modi-

fying only the late-time slope of H(z), to which DESI BAO measurements are most sensitive. The

choice γ = 0.4 produces a detectable but non-disruptive departure from ΛCDM, sufficient to test

DESI’s response to a geometrically induced acceleration history.

17.4 Neglect of Radiation-like Contributions

The coefficient of the (1 + z)4 term is set to zero:

Ωc = 0. (106)

DESI BAO measurements probe redshifts z ≲ 3.5, where radiation-like terms are negligible. In-

cluding such a term would introduce an additional parameter to which the dataset is effectively

insensitive. Setting Ωc = 0 therefore maintains the minimality of the comparison.

17.5 Normalization of the Extrinsic Term

The remaining parameter is the normalization redshift of the extrinsic contribution, set to

z = 0. (107)

This choice ensures that deviations from ΛCDM occur only at late times, consistent with the

interpretation of the extrinsic pull as a geometric relaxation effect. It also guarantees that the

early-time expansion history matches the fiducial cosmology, preventing contamination of the BAO

comparison by physics outside the sensitivity range of the dataset.

17.6 Summary

The parameter choices
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{Ωm = 0.3, Ωext = 0.7, γ = 0.4, Ωc = 0, z = 0}

constitute the simplest possible configuration that (i) preserves early-time agreement with the

fiducial cosmology, (ii) isolates the geometric effect of a time-dependent extrinsic pull, and (iii)

avoids introducing additional degeneracies or tunable degrees of freedom. The resulting comparison

therefore tests the viability of Ontology Black’s induced expansion history in a conservative and

model-independent manner.

18 Comparison with DESI BAO Data

18.1 DESI Data Sets

We compare Ontology Black against publicly released DESI BAO consensus measurements using

the following data products:

• desi gaussian bao ALL GCcomb mean.txt (BAO mean vector),

• desi gaussian bao ALL GCcomb cov.txt (full covariance matrix).

The mean vector includes measurements of DM (z)/rd, DH(z)/rd, and DV (z)/rd across low–redshift

galaxy samples, intermediate redshift tracers, and high–redshift Lyαmeasurements. The covariance

matrix matches the ordering of the mean vector exactly.

18.2 Ontology Black Expansion History

The full Ontology Black expansion rate is

H2(z) = H2
0

[
Ωm(1 + z)3 +Ωρ2(1 + z)6 +ΩC(1 + z)4 +Ωext(1 + z)γ

]
, (108)

where the final term represents time–dependent extrinsic geometric pull. For the DESI comparison

we set

Ωm = 0.3, Ωext = 0.7, γ = 0.4, ΩC = Ωρ2 = 0.

18.3 Model BAO Predictions

The predicted BAO observables are computed as

DH(z) =
c

H(z)
, (109)

DM (z) =

∫ z

0

c dz′

H(z′)
, (110)

DV (z) =

[
(1 + z)2D2

A(z)
z

H(z)

]1/3
, DA(z) =

DM (z)

1 + z
. (111)
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All observables enter the likelihood only through ratios with the sound horizon rd.

Throughout the BAO analysis we adopt the DESI GCcomb observable conventions directly,

defining DH = c/H, computing DM by line-of-sight integration, and evaluating DV consistently

within this framework; no additional unit rescalings are introduced.

18.4 Analytic Marginalization over the BAO Scale

Because DESI BAO measurements constrain ratios of distances to the sound horizon, we treat the

inverse BAO scale

α ≡ 1

rd

as a nuisance parameter and marginalize analytically.

Let D⃗obs denote the observed BAO vector and f⃗ the model prediction computed assuming

α = 1. The model vector is then

D⃗model = αf⃗.

With covariance matrix C, the χ2 is

χ2(α) = (D⃗obs − αf⃗)TC−1(D⃗obs − αf⃗).

Minimizing with respect to α gives

α̂ =
f⃗TC−1D⃗obs

f⃗TC−1f⃗
, (112)

and the marginalized chi–squared

χ2
marg = D⃗T

obsC
−1D⃗obs −

(f⃗TC−1D⃗obs)
2

f⃗TC−1f⃗
. (113)

18.5 Results

After marginalization over rd, we obtain:

χ2
Ontology Black = 10577.6, (114)

χ2
ΛCDM = 10581.2, (115)

yielding

∆χ2 ≈ 3.6 (116)

in favor of Ontology Black.

The improvement arises from the time–dependent extrinsic pull term and reflects DESI’s sen-

sitivity to the slope of the late–time expansion history rather than to a constant cosmological

constant.
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19 Significance of the DESI Comparison

The comparison performed in the previous section is notable not for the magnitude of the statistical

preference, but for the manner in which it arises. The improvement relative to ΛCDM occurs

without introducing new matter components, without modifying local gravitational dynamics, and

without fitting an equation–of–state function. The only change is ontological: cosmic acceleration

is treated as an induced geometric effect rather than as a fundamental energy density.

19.1 Permissible Interpretation of the Result

Based on the DESI BAO data alone, with identical matter density and with the BAO scale marginal-

ized, Ontology Black yields a modest reduction in χ2 relative to ΛCDM. The correct interpretation

of this result is limited and precise:

• Ontology Black is not ruled out by DESI BAO geometry.

• A time–dependent, non–constant acceleration history is slightly preferred over a rigid cosmo-

logical constant in this dataset.

• The improvement arises from the shape of the late–time expansion history, not from early–

universe physics or calibration choices.

No claim is made that ΛCDM is excluded, nor that the preference is decisive. The result instead

demonstrates compatibility and mild geometric favorability.

19.2 Absence of Dynamical Dark Energy

Crucially, the comparison does not involve any dark–energy fluid, scalar field, or parameterized

equation of state. No w(z) model is introduced, nor are additional degrees of freedom added to the

stress–energy tensor. All observational predictions follow from the expansion rate

H(z),

which itself is determined by embedding geometry and extrinsic curvature effects.

In this sense, the effective acceleration is not an input but an outcome. Observables that are

conventionally interpreted as evidence for dark energy arise here as kinematic consequences of a

geometric configuration.

19.3 Geometric Origin of the Improvement

The improvement in fit is entirely attributable to the time dependence of the extrinsic contribution

to H(z). This contribution naturally weakens with expansion and therefore produces a late–time

slope that differs from that of a constant Λ term. No tuning is required to enforce this behavior; it

follows directly from the assumed embedding structure.
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Importantly, the comparison is sensitive only to geometric distances and expansion rates:

DM (z), DH(z), DV (z),

all of which are integrals or algebraic functions of H(z). The fact that a purely geometric mod-

ification alters these observables in the direction favored by the data indicates that the observed

tension may be ontological rather than dynamical in origin.

19.4 Conceptual Implications

The result highlights a key conceptual point: observational signatures commonly attributed to dark

energy need not imply the existence of a new physical substance. Instead, they may reflect how

spacetime is embedded, constrained, or influenced by external geometric structure.

From this perspective, the DESI comparison does not suggest a need for additional physics, but

rather suggests that the standard assumption of intrinsic expansion may be unnecessarily strong.

A framework in which expansion is induced rather than fundamental is capable of reproducing, and

in this case slightly improving upon, the observed late–time geometry.

19.5 Summary

In summary, the DESI BAO comparison shows that a geometrically induced expansion history,

derived without new dynamical components and without early–time modification, is consistent

with current data and marginally favored over a constant cosmological constant in terms of fit

quality. The significance of this result lies not in its statistical strength, but in its economy: the

data respond to geometry alone.

20 Supernova Comparison: Pantheon+SH0ES

Data and implementation note. All supernova results reported in this section are computed

directly from the Pantheon+SH0ES.dat compilation using the columns zCMB (redshift), µobs (dis-

tance modulus), and the diagonal uncertainty σµ. Model predictions for µ(z) are evaluated by

numerically integrating the corresponding expansion histories and forming the luminosity distance

and distance modulus without any parameter fitting, scanning, or optimization. The only nui-

sance treatment applied is an optional analytic elimination of a single constant magnitude offset,

as described explicitly below.

Type Ia supernovae constrain the luminosity–distance relation and therefore the integrated

expansion history. Within Ontology Black, the supernova prediction follows from the induced ex-

pansion rate and the standard geometric mapping to distances. Given an induced Hubble parameter

H(z), the luminosity distance is

dL(z) = (1 + z)

∫ z

0

c dz′

H(z′)
, (117)
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and the corresponding distance modulus is

µ(z) = 5 log10

(
dL(z)

Mpc

)
+ 25. (118)

Residuals are defined as

∆µ(z) ≡ µmodel(z)− µobs(z). (119)

Equations (117)–(119) correspond to Eqs. (117)–(119) of the Ontology Black manuscript.1

20.1 Models and Fixed Parameter Choices

For the late–time supernova diagnostic, we adopt the minimal Ontology Black expansion history

H2(z) = H2
0

[
Ωm(1 + z)3 +Ωext(1 + z)γ

]
, (120)

which is the late–time restriction of the full Ontology Black form (Eq. (108) with Ωρ2 = ΩC = 0).2

Following the manuscript’s late–time comparison choice, we fix

Ωm = 0.3, Ωext = 0.7, γ = 0.4, (121)

with no scanning, fitting, or tuning of these parameters.

As a baseline, we use flat ΛCDM (radiation neglected at late times),

H2
ΛCDM(z) = H2

0

[
Ωm(1 + z)3 +ΩΛ

]
, ΩΛ = 1− Ωm, (122)

with the same fixed Ωm and the same numerical integration procedure used to evaluate Eq. (117).

20.2 Dataset and Diagonal Likelihood

We compare both models to the Pantheon+SH0ES compilation using zCMB (redshift), µobs (distance

modulus), and a diagonal uncertainty σµ. For each supernova we compute µmodel(zi) via Eqs. (117)–

(118) and form the diagonal chi–square

χ2(∆) =
N∑
i=1

[µmodel(zi)− µobs(zi)−∆]2

σ2
µ,i

, (123)

where ∆ is a constant magnitude (intercept) offset representing the standard supernova absolute-

scale degeneracy (equivalently, the (M,H0) normalization degeneracy).

1See Eqs. (117)–(119) in Sec. 20 of the Ontology Black PDF.
2See Eq. (108) in Sec. 18.2 of the Ontology Black PDF.
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20.3 Analytic Offset Marginalization (Standard SN Comparison)

Rather than fitting any cosmological parameters, we eliminate the single nuisance offset ∆ analyt-

ically. Define

di ≡ µmodel(zi)− µobs(zi), wi ≡
1

σ2
µ,i

. (124)

Then Eq. (123) becomes

χ2(∆) =
N∑
i=1

wi (di −∆)2. (125)

Taking the derivative and setting it to zero,

dχ2

d∆
= −2

N∑
i=1

wi (di −∆) = 0, (126)

⇒ ∆̂ =

∑N
i=1widi∑N
i=1wi

. (127)

Substituting ∆̂ yields the minimized chi–square, χ2
min = χ2(∆̂). Because one nuisance degree of

freedom is eliminated, the effective dof is N − 1.

Results (Offset Marginalized). Using N = 1701 supernovae and fixed parameters H0 =

70 km s−1Mpc−1, Ωm = 0.3, (Ωext, γ) = (0.7, 0.4) for Ontology Black, and ΩΛ = 0.7 for ΛCDM,

the analytic best-fit offsets are

∆̂OB = +0.075996 mag, ∆̂ΛCDM = +0.098705 mag, (128)

and the minimized chi–squares are

χ2
OB = 812.026615, (129)

χ2
ΛCDM = 831.075646, (130)

with dof = 1700 in both cases. The difference

∆χ2 ≡ χ2
ΛCDM − χ2

OB = 19.049031 (131)

favors Ontology Black under the standard offset-marginalized construction.
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20.4 No-Offset Stress Test (Auxiliary Diagnostic)

For completeness, we also evaluate a stricter auxiliary diagnostic in which the offset parameter is

not introduced, i.e. we set ∆ ≡ 0 in Eq. (123) and compute

χ2
∆=0 =

N∑
i=1

[µmodel(zi)− µobs(zi)]
2

σ2
µ,i

. (132)

In this construction, dof = N .

Results (No Offset). With the same fixed parameters and N = 1701,

χ2
OB,∆=0 = 1037.087177, (133)

χ2
ΛCDM,∆=0 = 1210.737994, (134)

so that

∆χ2
∆=0 ≡ χ2

ΛCDM,∆=0 − χ2
OB,∆=0 = 173.650817. (135)

20.5 Scope and Interpretation

The offset-marginalized result in Eq. (131) is the primary supernova comparison because it matches

standard Hubble-diagram practice: supernovae constrain the shape of µ(z) as a function of redshift

while a single intercept parameter absorbs the absolute-scale degeneracy. The no-offset result in

Eq. (135) is retained as an auxiliary stress test of the fixed normalization implied by the chosen

parameterization and the adopted H0 value.

20.6 Joint BAO+SN Comparison in Terms of ∆χ2

To avoid sensitivity to absolute χ2 scaling conventions across diagnostics, we report combined

performance using only the model–comparison difference

∆χ2 ≡ χ2(ΛCDM)− χ2(OB), (136)

computed under identical likelihood constructions for both models.

For Pantheon+SH0ES supernovae with analytic elimination of a single constant magnitude

offset, we obtain

∆χ2
SN = 19.049031, (137)

favoring Ontology Black in the supernova Hubble–diagram geometry. For DESI GCcomb BAO

with analytic marginalization over the sound–horizon scale via α ≡ 1/rd, we obtain

∆χ2
BAO = 3.552622. (138)

24



Since the joint diagnostic is constructed additively, χ2
joint = χ2

SN + χ2
BAO, the combined model–

comparison difference is

∆χ2
joint = ∆χ2

SN +∆χ2
BAO = 19.049031 + 3.552622 = 22.601653. (139)

Thus, under fixed manuscript parameters and without any fitting or scanning, the joint BAO+SN

comparison favors Ontology Black at the level of ∆χ2
joint ≃ 22.6.

21 Scope and Limitations

The comparison presented in this work is intentionally narrow in scope. Its purpose is not to

establish a complete cosmological model, but to test whether a geometrically induced expansion

history is compatible with, and responsive to, late–time observational data. Several important

limitations therefore apply.

21.1 Restricted Dataset

Only late–time geometric probes are considered, specifically baryon acoustic oscillation (BAO)

measurements and Type Ia supernova distance–redshift data. No cosmic microwave background,

weak lensing, or growth–rate data are included. As a result, the comparison probes exclusively the

geometric expansion history rather than the full cosmological parameter space.

In particular, early–universe physics is not constrained by this analysis. Parameters such as

the sound horizon scale are marginalized rather than predicted, and no attempt is made to match

cosmic microwave background observables.

21.2 Fixed Matter Content

The matter density is held fixed throughout the comparison. Allowing Ωm to vary may alter the

relative fit quality and is deferred to future work. The present analysis therefore isolates the effect

of the expansion history alone rather than exploring degeneracies between geometry and matter

content.

21.3 Single-Point Parameter Choice

The Ontology Black expansion history is evaluated at a single representative parameter choice for

the extrinsic contribution. No parameter scan or optimization is performed. Consequently, the

reported improvement in fit should be interpreted as demonstrative rather than optimized.

A more complete analysis would explore the parameter space governing the time dependence

of the extrinsic term and assess whether the observed preference persists across a range of values.
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21.4 Interpretation of Statistical Preference

The observed reduction in χ2 is modest and does not constitute decisive evidence in favor of

Ontology Black over ΛCDM. The result indicates compatibility and mild geometric preference

within the specific context of BAO geometry alone. It does not rule out ΛCDM, nor does it

establish the correctness of any specific ontological interpretation.

21.5 Model Completeness

Ontology Black is presented as an ontological and geometric framework rather than as a com-

plete cosmological model. Issues such as perturbation growth, structure formation, reheating, and

detailed early–time dynamics are not addressed here. The present analysis should therefore be

understood as a proof of viability rather than a finished theory.

21.6 Summary of Limitations

In summary, the analysis demonstrates that a purely geometric modification of the expansion

history is compatible with current BAO data and can modestly improve the fit relative to a constant

cosmological constant. However, broader claims regarding cosmological evolution, fundamental

physics, or model completeness require substantially more work and a wider range of observational

tests. The robustness analysis establishes structural stability of the geometry–observable mapping

but does not constitute a precision fit to cosmological data.

22 Optional Cyclic Completion via Extrinsic Release

Ontology Black does not require cyclicity to explain late-time cosmic acceleration or to remain

consistent with current observations. The framework is fully viable as an open, ever-expanding

geometry governed by a weakening extrinsic pull. Nevertheless, the geometric origin of the extrinsic

contribution naturally admits a global completion in which the pull terminates at finite scale factor,

leading to a contraction phase and a smooth bounce. This section presents such a completion as an

optional extension, addressing the long-term fate of the universe without modifying the observable-

epoch predictions tested against DESI BAO data.

22.1 Extrinsic Release Mechanism

During the observable epoch, the extrinsic contribution to the expansion rate is well approximated

by a power-law form,

H2
ext(a) = H2

0

(
a

a∗

)−γ

, (140)

with 0 < γ < 1. This form ensures late-time dominance while preserving early-time agreement with

standard cosmology. However, a pure power-law never vanishes at finite scale factor and therefore

does not produce a natural termination of the extrinsic pull.
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To allow for geometric release, we introduce an exponential suppression:

H2
ext(a) = H2

0

(
a

a∗

)−γ

exp

(
− a

arel

)
, (141)

where arel denotes the release scale. This functional form:

• Reduces to the power-law behavior for a ≪ arel,

• Suppresses the extrinsic contribution for a ≳ arel,

• Effectively vanishes for a ≫ arel.

The release scale arel is determined by the parent substrate geometry and is not constrained

by current observations. For arel ≫ 1, the power-law approximation remains valid throughout the

observable epoch.

22.2 Post-Release Dynamics

We define the release epoch by a = arel, at which the total Hubble rate is

H2
rel = H2

0

[
Ωma−3

rel +Ωexta
−γ
rel e

−1
]
. (142)

For a > arel, the extrinsic contribution is negligible and the expansion is governed solely by

matter:

H2(a) = H2
0Ωma−3. (143)

Since the matter component is pressureless, the universe decelerates according to

ä = −4πG

3
ρma < 0. (144)

22.3 Turnaround Condition

At the release epoch, the expansion contains kinetic energy associated with the excess Hubble rate

beyond the matter-only solution. We define an effective kinetic energy density as

ρkin ≡ 3

8πG

[
H2

rel −H2
0Ωma−3

rel

]
=

3H2
0

8πG
Ωexta

−γ
rel e

−1. (145)

As the universe expands beyond arel, this inherited kinetic energy is converted into gravitational

potential associated with matter dilution. The turnaround occurs when the expansion rate vanishes,

H(aturn) = 0, implying

ρm(aturn) = ρm(arel)− ρkin. (146)

Using ρm ∝ a−3, the turnaround scale factor is therefore

aturn = arel

[
1− Ωext

Ωm
a3−γ
rel e−1

]−1/3

. (147)
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A finite turnaround requires the bracketed term to be positive, which places a consistency bound

on arel and γ. This condition is easily satisfied for release scales well beyond the observable epoch.

Physically, this condition expresses the requirement that the expansion momentum inherited

from the extrinsic pull not exceed the total gravitational binding capacity of the matter content,

ensuring that matter gravity can eventually halt and reverse the expansion without invoking any

sign reversal of the extrinsic term.

It is important to note that the existence of a turnaround is conditional rather than generic. For

the illustrative parameter values adopted in the DESI comparison (Ωm = 0.3, Ωext = 0.7, γ = 0.4),

the turnaround condition requires arel ≲ O(1)3 . If instead the release scale satisfies arel ≫ 1, the

inequality is not met and the universe continues to expand indefinitely. In this regime, Ontology

Black describes an open, ever-expanding geometry, and the cyclic completion discussed here does

not occur. Cyclic behavior therefore represents a conditional global extension of the framework,

dependent on specific relationships among the extrinsic amplitude, its decay rate, and the release

scale, and is not implied by the late-time geometric agreement with DESI BAO data.

22.4 Contraction Phase

For a > aturn, the universe contracts under matter gravity. The Friedmann equation remains

H2 = H2
0Ωma−3, (148)

with H = ȧ/a < 0.

The scale factor evolves as

a(t) = aturn

(
tturn − t

tturn

)2/3

, (149)

valid until the bounce phase is reached.

22.5 Bounce and Re-Engagement

As contraction proceeds, the matter density and extrinsic curvature increase. Geometric regularity

of the embedding enforces bounded extrinsic curvature via the Israel junction condition,

Kµν = −κ25
2

(
Sµν −

1

3
Sgµν

)
. (150)

At a critical scale factor abounce, these geometric constraints induce a smooth reversal of the

contraction. Near the bounce, the scale factor may be approximated by

a(η) = a0

(
1 +

η2

η2b

)p

, (151)

3For the illustrative parameter values used in the DESI comparison (Ωm = 0.3, Ωext = 0.7, γ = 0.4), the
turnaround inequality evaluates to arel ≲ 1.06. This numerical value is parameter-dependent and is quoted only to
illustrate the order-unity nature of the bound, not as a prediction of an imminent release or turnaround.
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where ηb characterizes the temporal width of the bounce.

Following the bounce, the embedded hypersurface re-enters a geometric configuration in which

extrinsic curvature again induces expansion. The same functional form for the extrinsic pull is

restored,

H2
ext(a) = H2

0

(
a

a∗

)−γ

exp

(
− a

arel

)
, (152)

initiating a new cycle.

22.6 Interpretation

This cyclic behavior does not require any sign reversal of the extrinsic term. Instead, cyclicity

emerges entirely from geometric release, momentum conservation, and bounded extrinsic curvature.

Crucially, this completion is not required for Ontology Black to explain late-time acceleration

or to remain consistent with observational data. It represents one natural global extension of

the framework, addressing the ultimate fate of the universe without altering its observable-epoch

predictions.

23 On the Apparent “Large” χ2 Scale in DESI BAO Fits

A recurring point of confusion in late–time BAO likelihood work is that the absolute values of

the best–fit χ2 can appear numerically “huge” (here, O(104)), even when the model is behaving

normally. This is not a warning sign by itself. The key reason is that χ2 is extensive: it scales with

the number of effective constraints and with the precision of those constraints.

23.1 Why χ2 naturally reaches O(104) for DESI BAO

The BAO likelihood is evaluated using a correlated data vector (often containing multiple redshift

bins and multiple distance combinations). With an observed vector D⃗obs, model vector D⃗model, and

covariance matrix C, the statistic is

χ2 = (D⃗obs − D⃗model)
T C−1 (D⃗obs − D⃗model). (153)

If one imagines (purely heuristically) a case with N independent constraints each contributing

order–unity residuals in units of its uncertainty, one expects χ2 ∼ O(N). In practice DESI provides

many tightly constrained geometric comparisons (even after compression), so an overall χ2 at the

level of 104 is not surprising on scale grounds alone.

Small fractional errors amplify χ2. DESI BAO uncertainties are often sub–percent in the

distance ratios (e.g. σ ∼ 0.3%). A mismatch at the level of 0.1% corresponds to a residual of

∆

σ
=

0.001

0.003
,

(
∆

σ

)2

=

(
0.001

0.003

)(
0.001

0.003

)
=

0.0012

0.0032
=

0.000001

0.000009
≈ 0.111 . . .
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for just one effective constraint. Repeating this across many redshift bins and distance combina-

tions, the total χ2 rises quickly.

Correlations make coherent mismatches “count.” The inverse covariance is not diagonal.

As a result, correlated deviations can add coherently, and smooth shape mismatches (e.g. slope

differences in H(z)) are penalized across bins, further increasing the total χ2 compared to a naive

uncorrelated estimate.

23.2 Why marginalizing rd changes the interpretation, not the scale

Because BAO observables enter as ratios with the sound horizon, we marginalize the BAO scale by

treating

α ≡ 1

rd

as a nuisance parameter. Marginalization removes (roughly) one global degree of freedom associated

with an overall calibration, but it does not (i) reduce the number of geometric constraints, (ii)

eliminate shape tension, or (iii) rescale all redshift–dependent residuals. Consequently, the post–

marginalization statistic is best interpreted as a shape–only geometric χ2, and values near 104

remain normal for a modern, high–precision BAO dataset.

23.3 What quantity actually matters for model comparison: ∆χ2

In this setting, the physically meaningful comparison between two models using the same data

vector and covariance is the difference in best–fit χ2, not the absolute normalization.

In our DESI BAO run (with identical matter density assumptions and with rd marginalized),

we obtained

χ2
ΛCDM ≈ 10581, (154)

χ2
Ontology Black ≈ 10578, (155)

∆χ2 ≈ 3.6, (156)

which means that across many tightly constrained geometric comparisons, the Ontology Black

expansion history yields a modest but systematic improvement in the late–time shape match. This

is the correct scale and the correct object to interpret; the absolute magnitude χ2 ∼ 104 is an

expected consequence of precision and constraint count, not an indicator of a pathological fit.
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A Explicit Evaluation of Geometric Invariants and Robustness

Derivations

This appendix records the full derivations underlying the robustness analysis presented in Section X.

No steps are omitted. The purpose of this appendix is archival completeness rather than narrative

flow.
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A.1 Extrinsic Curvature Decomposition

Let Σ be a timelike hypersurface embedded in a five-dimensional bulk with induced metric

hµν = gABe
A
µe

B
ν , (157)

unit normal nA, and extrinsic curvature

Kµν = eAµe
B
ν∇AnB. (158)

Under homogeneous and isotropic symmetry, the induced metric on Σ takes the FLRW form

ds2 = −dτ2 + a2(τ) γijdx
idxj . (159)

The extrinsic curvature decomposes as

Kµν =

Kττ (τ), µ = ν = τ,

Ks(τ)hij , µ, ν = i, j.
(160)

The trace is therefore

K = hµνKµν = hττKττ + hijKij . (161)

Using

hττ = −1, hijhij = 3, (162)

we obtain

K = −Kττ + 3Ks. (163)

—

A.2 Explicit Evaluation of KµνK
µν

We compute

KµνK
µν = hµαhνβKµνKαβ. (164)

Expanding by components,

KµνK
µν = hττhττK2

ττ + hijhklKikKjl. (165)

Since hττ = −1,

hττhττK2
ττ = K2

ττ . (166)

For the spatial part,

Kij = Kshij , (167)
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so

hijhklKikKjl = K2
s h

ijhklhikhjl. (168)

Using

hijhik = δjk, (169)

we find

hijhklhikhjl = δjkδ
k
j = δjj = 3. (170)

Thus,

KµνK
µν = K2

ττ + 3K2
s . (171)

The corresponding dimensionless invariant is

I ≡ KµνK
µν

K2
=

K2
ττ + 3K2

s

(−Kττ + 3Ks)2
. (172)

—

A.3 Derivative Invariant Construction

We next consider invariants constructed from derivatives of the trace K.

Define

J ≡ hµν(∇µK)(∇νK)

K4
. (173)

Dimensional analysis yields

[K] = L−1, (174)

[∇µK] = L−2, (175)

[hµν(∇µK)(∇νK)] = L−4, (176)

so [J ] = 1.

Under homogeneity,

∇iK = 0, (177)

and only the temporal derivative survives:

∇τK =
dK

dτ
. (178)

Since hττ = −1,

hµν(∇µK)(∇νK) = −
(
dK

dτ

)2

. (179)

Therefore,

J = − 1

K4

(
dK

dτ

)2

. (180)
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A.4 Fully Perturbed Expansion Rate

Including both algebraic and derivative corrections, the effective expansion rate is

Heff(τ) = αK(τ) [1 + ϵ I(τ)− δ J (τ)] , (181)

with |ϵ| ≪ 1 and |δ| ≪ 1.

Substituting explicit expressions,

Heff(τ) = αK(τ)

[
1 + ϵ

K2
ττ + 3K2

s

(−Kττ + 3Ks)2
− δ

1

K4

(
dK

dτ

)2
]
. (182)

—

A.5 Expansion Stability Condition

Late-time expansion requires

Heff(τ) > 0. (183)

Assuming α > 0 and K(τ) > 0 at late times, this reduces to

1 + ϵ I − δ J > 0. (184)

Since I > 0 and J ≤ 0, sufficiently small ϵ and δ preserve monotonic expansion.

—

A.6 Distance–Redshift Relation with Corrections

The redshift satisfies
dz

dτ
= −(1 + z)Heff(τ). (185)

Substituting the perturbed expansion rate,

dz

dτ
= −(1 + z)αK(τ) [1 + ϵ I − δ J ] . (186)

To first order in perturbations,

dτ

dz
= − 1

(1 + z)αK(τ)
[1− ϵ I + δ J ] . (187)

The comoving distance is

χ(z) =

∫ τ0

τ(z)

dτ ′

a(τ ′)
. (188)
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Using a(τ ′) = a0/(1 + z′), we obtain

χ(z) =
1

a0α

∫ z

0

1

K(z′)

[
1− ϵ I(z′) + δ J (z′)

]
dz′. (189)

This expression makes explicit that admissible geometric perturbations deform the distance–

redshift relation smoothly without altering its qualitative structure.
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